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As is known, the propagation velocity of long waves is proport ional  to ~ (hi is the bas in  depth). Therefore,  
when a wave propagates in a bas in  with uneven bottom its velocity is lower above the underwater  p rominences  than 
above the deeper  par ts  of the basin,  which leads to deformat ion of the wave, accompanied by concentra t ion of the 
energy above the shallow port ions of the basin.  In this case the wave propagating along an underwater  r idge will differ 
cons iderably  f rom the wave propagating above the deep port ions of the basin.  This pecul iar i ty  in the propagation of 
waves on the sur face  of a liquid was noted by Lavren t ' ev  (1957). 

The f i r s t  studies taking into account the descr ibed  influence of an underwater  ridge were made in the acoustic 
approximat ion by Munk and Ar thur  [1], who used the method of geometr ica l  optics.  

Sun Ts ' ao  made an exper imental  study of the influence of an underwater  r idge and ca r r i ed  out some calculat ions 
[2]. He demonst ra ted  the quantitative and quali tative d iscrepancy between observat ions  and the calculat ions  of Munk 
and Arthur .  Thus, SunTs ' ao  notes nea r ly  s ta t ionary  propagation of the wave above the ridge. This resu l t  is not 
contained in the acoustic theory. 

In this paper we examine the wave propagation problem in a basin with cylindrical bottom. In the nonlinear long- 

wave theory approximation it is shown that stationary propagation of a solitary wave above an underwater ridge may be 
observed for some bottom form. Nonstationary wave propagation above the ridge is examined in the linear theory. It is 

shown that for certain conditions the wave decays considerably more slowly along the ridge than in other directions. 

1. P rob lem formulat ion.  The subject  problem reduces to finding the free surface form zl = ~l(x:, Yl, tl) and the 
velocity potential  ~l(x:, Yi, zl, ti). In the region occupied by the fluid the potential  sat isf ies  the Laplace equation 

(1 .1 )  

and the boundary conditions: 

1) bottom impermeabi l i ty  zi = - h i ( x l ,  Yl) 

ah~ ao l  q_ aht ao~ a@: _ O' (1.2) 

2) free surface impermeability zi = ~l(xl, Yl, tl) 

(1.3) 

3) constant pressure at the free surface zl = [l(xl,yL, tl) 

o,-7 : -  \\-:g~; + k~;~) I v;;~,) ) t g~l = o. (1.4) 

Here g is the gravi ty accelerat ion.  

In addition, the solution mus t  sat isfy  ce r ta in  ini t ia l  conditions,  which can be formulated in te rms  of the ini t ia l  
value of the potential  and the ini t ial  form of the f ree  surface  [3]. 

The problem presen t s  ser ious  difficult ies for solution in this formulat ion.  However, the problem can be 
simplif ied cons iderably  by cer ta in  additional assumptions  on the na ture  of the solution. 
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2. Long waves  in  a b a s i n  with uneven  bot tom (non l inea r  theory) .  If the wavelength  l i s  l a rge  in  c o m p a r i s o n  with 
the ave r age  depth h0 and the c h a r a c t e r i s t i c  length  of the bo t tom i r r e g u l a r i t i e s  is  no l e s s  than l,  then we can  in t roduce  
the s m a l l  p a r a m e t e r  a = h ~ / l  2 into the p r o b l e m  by m a k i n g  the v a r i a b l e  r e p l a c e m e n t  

h: ---- ho (1 - -  8h), 

x 1 ~ lx," y :  ~ ly ,  z: ---- h o z ,  

l tl= t, (2.:) 

Here  the t ime  and po ten t ia l  s c a l e s  a r e  ob ta ined  f r o m  (1.1)-(1 .4)  unde r  the a s s u m p t i o n  that ~ and @ and the i r  
d e r i v a t i v e s  with r e s p e c t  to x, y, and t a r e  of o r d e r  uni ty .  

We f u r t h e r  a s s u m e  that  the wave ampl i t ude  

a ~ ~h 0 (2.2) 

as  is  the c a s e  for  the s o l i t a r y  wave.  The po ten t i a l  is  sought  in  the f o r m  of the s e r i e s  

�9 ---~ (1)o -}- Oza q- O~a ~ q- . . . .  (2.3) 

To f ind the coef f ic ien t s  of this  s e r i e s  we need only  know the va lue  of the po ten t ia l  at the f r ee  s u r f a c e  ~(x, y, t) = 
= @(x, y, a [ ,  t) and use  the Lap lace  equat ion and the bot tom i m p e r m e a b i l i t y  condi t ion .  The s t a n d a r d  ca lcu la t ion  y ie lds  

0~- (I) (x, y, z, t) ]~=:~ = a (eVhVq~ - -  (l - -  eh -}- :r A(p) - -  

V 0 \ ,0%-J, A = ~ +  07). (2.4) 
F u r t h e r  

~ - I z = ~  = -ffK ~- 0 (~) " (2.5) 

Subs t i tu t ing  (2.4) and (2.5) into the condi t ions  at the f r e e  su r f ace ,  we obta in  two equa t ions  for  d e t e r m i n i n g  the 
f o r m  of the f r e e  s u r f a c e  [(x,  y, t) and the va lue  of the po ten t ia l  at the f r ee  su r f ace  ~0(x, y, t) 

a~ 
--~ -{- V ((l - -  eh + ~ )  V ~ )  -}- ~/3aA~(p = 0 (a 2 ~- 800 , (2.6) 

0(p 0--t q- :/~a (~TqD)~ ~- ~ ----- O(a2). (2.7) 

Equa t ion  (2.6) is  the cond i t ion  of f r ee  s u r f a c e  i m p e r m e a b i l i t y ,  and Eq. (2.7) is the c o n s t a n t - p r e s s u r e  condi t ion .  

3. Steady p ropaga t ion  of a s o l i t a r y  wave above a c y l i n d r i c a l  bo t tom.  The s teady  so lu t ion  of (2.6), (2.7) depends  
on y and t in  the c o m b i n a t i o n  y - ct  (in this  sec t ion  the c o m b i n a t i o n  y - c t  i s  des igna ted  s i m p l y  as  y). Le t  for  
d e f i n i t e n e s s  c > 0, i . e . ,  the wave p ropaga t e s  in  the pos i t ive  d i r e c t i o n  of the y - a x i s .  

The b a s i n  bot tom is a s s u m e d  c y l i n d r i c a l :  

z ---- - -  i + eh (x) (8~ - -4 i ) .  

We seek  a so lu t ion  of the f o r m  

(x, y) ----- ~o (Y) -}- e~l (x, y) -}- 0 (e~). (3.1) 

(x, y) = ~0 (y) + ~(a (x, y) + 0 (8~).  (3 .2 )  

Subs t i tu t ion  of (3.1), (3.2) into (2.6), (2.7) l eads  to the known R a y l e i g h - L a v r e n t ' e v  f o r m u l a s  [4, 5] for  the 

func t ions  ~0 and ~0. 

One of the so lu t ions  of these  equat ions  will  be the s o l i t a r y  wave 

t0 sch ~ V3u d(po 2 V3Y = = s c h  - - f -  q- O(cr (3.3) 
2 ' dy 
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The  wave  p r o p a g a t i o n  v e l o c i t y  c is  connec ted  with the wave  ampl i t ude  by the r e l a t i o n  

c = 1 dr- '/2~z -t- 0 ((z2). (3.4) 

The  func t ions  ~1 and ~ol s a t i s f y  the equa t ions  

oC, ~ o  = 0 (a), o~, ay + hcpt - -h  (x) ~ - -  ~ + gt ----- 0 (cr (3.5) 

Hence  i t  is  not  d i f f i cu l t  to ob ta in  the  w a v e  p r o f i l e  d i s t o r t i o n  c a u s e d  by the bo t tom i r r e g u l a r i t y  

i (x~)h(~)d~+O(a). (3.6) d3cp0 ~ =  

A s t a t i o n a r y  so lu t ion  which  b e c o m e s  a s o l i t a r y  wave  as  Ixl ~ co is  p o s s i b l e  only in a ba s in  whose  bo t tom p r o f i l e  
s a t i s f i e s  the cond i t ions  

~ h(x)dx=O, ~xh(x)dx=O. (3.7) 

T h e s e  cond i t ions  wil l  be  s a t i s f i e d  if  the bo t tom c o n s i s t s  of c r e s t s  and v a l l e y s  whose  c r o s s - s e c t i o n a l  a r e a s  a r e  
the  s a m e  and  the bo t tom p r o f i l e  has  a v e r t i c a l  p lane  of s y m m e t r y .  

Le t  the  r i d g e  s a t i s f y  cond i t ions  (3.7) and be a loca l  p e r t u r b a t i o n  of the bo t tom,  i . e . ,  h(x) = 0 fo r  txl > k. Then  
f r o m  (3.6) and (3.3) we can e s t i m a t e  the ampl i tude  of the s o l i t a r y  wave  p e r t u r b a t i o n  caused  by the r i d g e  

In the d i m e n s i o n s  of the v a r i a b l e s  

b is  the r i d g e  width,  H e r e  el is  the r i dge  he ight ,  

Note.  It  fo l lows  f r o m  (2.6), 

If we a s s u m e  that  

5 ~ ~sL ~ �9 (3.8) 

51" sla~b~ (3.9) 
h0 r 

and a is  the ampl i t ude  of the s o l i t a r y  wave .  

(2.7) that  fo r  s t eady  wave  p r o p a g a t i o n  with  the v e l o c i t y  c = 1 + O(c~) 

a ~  / ax ~ -  0 (a + 8). 

0 
a-~-~ )f~, 8 = ~  , (3.10) 

then a f t e r  exc lud ing  [ and neg l ec t i ng  t e r m s  of O(c~) we obtain  the fo l lowing  equa t ion  fo r  the po ten t i a l  q~(x, y) at the f r e e  
s u r f a c e :  

a - - ~ - ~  + (x ) ] -YU+T Oy \ ay / + ~ oy~ - (3 .11)  

We m i g h t  think that  th is  equa t ion  has  a so lu t ion  which  d e c r e a s e s  in a l l  d i r e c t i o n s  at inf ini ty .  But  this  i s  not  the 
c a s e ,  as  i s  e a s i l y  s e e n  if  we a s s u m e  that  the d e r i v a t i v e s  of o r d e r  1, 2 ,3  of the func t ion  ~ d e c r e a s e  at  inf in i ty  no s l o w e r  
than (x ~ + y~)-,/,+~, w h e r e  ~ is  an a r b i t r a r i l y  s m a l l  number .  T h e s e  cond i t ions  e n s u r e  that  ~ = c o n s t  a t  co I n t e g r a t i o n  of  
(3.11) with r e s p e c t  to X fo r  f ixed  y y i e ld s  

co 

~\ ~ h ( x ) ) ~ r  a~ (~  2 \ Oy ] "]- T "~y3) aa  = const . 
-.-oo 

(3.12) 

It fo l lows  f r o m  the cond i t ions  at  inf in i ty  that  cons t  = 0, a f t e r  which it  is not d i f f icu l t  to find by i n t e g r a t i n g  (3.12) 
with r e s p e c t  to y that  
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\Oy]  d X d y = O  for - ~ - ~ 0 .  (3.i3) 
- - c o  - - c r  

4. Unsteady waves in a bas inwi th  a cy l indr ica l  bot tom (l inear  theory) .  Let  us examine under the assumptions of 
l inear  wave theory  the unsteady propagation of waves in a basin with uneven bottom resu l t ing  f rom an init ial  
~disturbance. We assume  the wave ampli tude and its ra t io  to the wavelength to be smal l ;  this makes  it poss ib le  to shift  
the conditions at the f r e e  sur face  to the plane of equi l ibr ium of the r e s t ing  fluid and neglect  the nonlinear t e rms  in the 
boundary conditions (1.3) and (1.4). 

The basin depth is assumed to be a r b i t r a r y  and independent of the va r i ab le  y, i . e . ,  the bottom is cyl indr ica l  z = 
= - 1  + h(x), h < 1. The p a r a m e t e r s  c~ and e equal unity. We seek  the pa r t i cu la r  solutions of the p rob lem which lead to 
an equation fo r  the f r e e  sur face  of the fo rm 

r := lp (~) e ~(~t-~v) , (4.1) 

where  w and v a r e  p a r a m e t e r s ,  and the functions r - -  0 as Ixl ~ ~o. We thereby study solutions which r e p r e s e n t  a 
p r o g r e s s i v e  wave propagat ing along the r idge  and decaying rapidly in the d i rec t ion  perpendicu la r  to the r idge.  

Waves of this type, t rave l ing  along a sloping f lat  beach, were  found by Stoker and have been studied by seve ra l  

authors [6]. 

Let  the bottom be a horizontal  plane with a local r i s e  at a < x < b. Then it  may be shown that solutions of the 
fo rm (4.1) exis t  and have seve ra l  in te res t ing  c h a r a c t e r i s t i c s .  We find that for  fixed v there  is only a f ini te  number  of 

solutions of this form,  

= ~k (x, v), (0 = ~0 h (v), k = i, 2 . . . . .  n.  (4.2) 

The functions ~k(X, v) and the numbers  Wk(V) natura l ly  depend on the p a r a m e t e r  v and a re  defined for  c~ k < lvl < 
< ilk, where  the functions themse lves ,  their  number ,  and the in terval  of var ia t ion  of v a re  comple te ly  defined by the 
f o r m  of the bottom and a re  independent of the init ial  conditions [7]. The concre te  computation of the functions Ck and 
w k and the de te rmina t ion  of the i r  number  is poss ible  only with the aid of computers .  However ,  i t  is poss ible  to make a 

qual i ta t ive analysis ;  for  example,  we can es tabl i sh  that for  each 

~k (x, ~) = 0 (e-~(~)lx[), p (~) > 0 for ix[-* ~ . (4.3) 

Solution (4.1) does not approach 0 as lyl - -  oo. But if we mult iply (4.1,) by the a r b i t r a r y  function a(v) and in tegra te  
with r e s p e c t  to v we obtain a solution which approaches  0 as R = (x 2 + y2) U2 - -  ~, and the r a t e  of approach to infinity 
can be a r b i t r a r i l y  fast  with sui table choice of the function a(v) .  This wave solution is a cap-cloud type of wave which 
t r ave l s  with constant  mean ve loc i ty  along the r idge,  gradual ly  spreading out along the r idge  and reducing in amplitude. 
The energy of such a wave is loca l ized  in a band pa ra l l e l  to the r idge.  Waves of this type also develop f rom an 

a r b i t r a r y  init ial  d i s ~ r b a n e e .  

Assume  for  s impl ic i ty  that #(x, y, z, 0) = 0. Then 

= ~I+~+G+..-+~+~,. (4.4) 

where  

~ =1/2~ f e - i~  ~ ( x ,  ~)cos~)~(,~)t% (v)d~, (4.5) 

a~ = i ei~Ur v)~(z, y, O)dxdy. (4.6) 

The sense  of equal i ty  (4.4) is that the total motion energy  

E(~)= E(~I)+E(~2)+...+E(~)+E(~.). (4.7) 

Consequently the solution can be represented in the form of the sum of terms of a definite type. The terms ~k 

describe a group of waves traveling along the ridge. We can identify a special class of initial disturbances of the free 

surface when [, = 0. This class is fairly broad. For certain particular cases of initial conditions we may find that only 

the ~k terms are present in the solution, and the remaining terms of the series (4.4) vanish. Solution (4.4) is analogous 

to the expansion of an arbitrary motion of a linear oscillatory system into the sum of the characteristic oscillations. 
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A ledge on the bottom of the bas in  along a ver t ica l  beach plays exactly the same role as does the underwater  
r idge.  What has been said above is also valid in this case.  

5. Asymptotic behavior  of unsteady waves above an underwater  ridge. The study of the asymptotic behavior  of 
the solutions through a long time in terva l  is made using the s ta t ionary-phase  method. For  fixed x integral  (4.5), which 
gives the solution [k, differs f rom the solution for plane waves above a horizontal  bottom only in the form of the 
function Wk(V). The decay of Sk as t ~ 0% y / t  = const,  takes place because d2wk/dV z ~ 0. The ini t ia l  d i s turbance  of the 
f ree  surface  breaks  down into an ever  inc reas ing  number  of waves (cres ts  and valleys),  and the length of each wave 
(along the y-axis)  inc reases .  In this case the wave amplitude ~k decreases  as t -1/2 if d2cok/dv z ~ 0. However, if at 
some point % ~ (a~, b~) the function d~cok/dv ~ has a zero of order  m, then the vicinity of the point v k in in tegra l  (4.5) 
yields a group of re la t ive ly  slowly d is in tegra t ing  waves of amplitude ~ t -~ / ( '~)  , t ravel ing with the average velocity 
dwk(Vk)/dv along the y-axis .  Study of the zeros of the function d ~ w k / d v  2 as a function of the ridge form shows that 

~ ~ t-': ~ l u i -'~ , (5.1) 

where y takes one of the values lh, 1/3, V4 and is de termined only by the shape of the bottom. Thus 7 = 1/4 if the bottom 
shape sa t i s f ies  a ce r t a in  equality. 

In order  to analyze this phenomenon we use the approximate equations (2.6) and (2.7), which after l inear iza t ion  
and s impl i f ica t ion under  assumpt ion (3.10) yield the equation 

a~ 02~ o~t a a~ 
(5.2) 

This equation differs f rom the equation of l inear  shallow water theory in the las t  term.  If we subst i tute into (5.2) 
a function of the form (4.1) we obtain the equation 

Let 

:d-~-d~r +(_~+~+ ~I~2h(X) +~)),(X)= ~ (5.3) 

h(X)= { ~', ixl<~ 
[ X l > l  

By vir tue  of the symmet ry  of the function h(X) the eigenfunctions of (5.3) can be only even and odd. Therefore  it 
is sufficient  to examine separa te ly  the even solutions 

[ ~ cos ~x (0 < x < i) ,  
~P----(b exp (-- Vv*--v'~-- ~e)(X-- i) ( X > i ) ,  (5.4) 

and the odd solutions,  taking the sine in place of the cosine in the in te rva l  ( -1 ,  1). Here 

t x2 = (-- v2 q_ (02) + v~q 1 
a + -g,,~, q > O .  (5 .5 )  

Substituting (5.4) into the matching conditions at the point X = 1 (continuity of ~ and (1 - ~h)d~/dX, or with the 
adopted accuracy dr we obtain 

(5.6) 

(5.7) 

(5.8) 

~t~ = 1/2 u (~ -- i) § ~k (0 ~ % ~ IAu). 

Here  ~?k is defined by the impl ic i t  equation 

On the other hand, f rom definition (5.5) there follows to within O(a z) 

It follows f rom (5.7) that in the vicini ty of u* = 1/27r(k - 1) the function 
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and is pos i t ive  in the vicini ty  of v* = ~. Consequently,  the r ight-hand side of (5.8) for  suff icient ly sma l l  q has no zeros ;  
for  suff icient ly l a rge  q there  a r e  zeros .  Numer ica l  calculat ions  show that fo r  q > qk the function dZwk/dV 2 has two 
f i r s t - o r d e r  ze ros  which m e r g e  for q = qk' fo rming  a s e c o n d - o r d e r  zero.  We note that in the shallow water  formulat ion 
the t e rm - v *  is not p re sen t  in the bracke t  in (5.8); the re fo re  there  is a s ingle f i r s t - o r d e r  zero for  all q > 0. 

Thus, if the bottom is a broad step of sma l l  height then a v e r y  slowly decaying group of waves propagates  along 
the r idge.  Its r a te  of decay JyJ- ' /depends  on the step a r e a  S as follows 

~ =  lh for 0 ~ 2q----- S / h ~  ~33.6 . 

= 1/4 for  S/h% = 43.0,33.6, 34.4, ..., 

= i/z for  o ther  8 / h0~. (5.9) 

Thus,  the influence of an underwater  r idge  on wave propagat ion does not r educe  to a s imple  i nc r ea se  of the 
ampli tude but a lso  de t e rmines  in a s ignif icant  way the v e r y  p roce s s  of wave propagation,  a l te r ing  the nature  of the 
wave decay along the r idge.  Very  slowly damped waves (5.1) can propagate  along the r idge ,  while the asymptot ic  
behavior  of waves in a basin with smooth bottom has the f o r m  [8] 

N (x  2 -~ y ~ ) - ' l ,  . (5.10) 
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