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As is known, the propagation velocity of long waves is proportional to vhy (h; is the basin depth). Therefore,
when a wave propagates in a basin with uneven bottom its velocity is lower above the underwater prominences than
above the deeper parts of the basin, which leads to deformation of the wave, accompanied by concentration of the
energy above the shallow portions of the basin. In this case the wave propagating along an underwater ridge will differ
considerably from the wave propagating above the deep portions of the basin. This peculiarity in the propagation of
waves on the surface of a liquid was noted by Lavrent'ev {1957).

The first studies taking into account the described influence of an underwater ridge were made in the acoustic
approximation by Munk and Arthur [1], who used the method of geometrical optics.

Sun Ts'ao madean experimental study of the influence of an underwater ridge and carried out some calculations
[2]. He demonstrated the quantitative and qualitative discrepancy between observations and the calculations of Munk
and Arthur. Thus, SunTs'aonotesnearly stationary propagation of the wave above the ridge. This result is not
contained in the acoustic theory.

In this paper we examine the wave propagation problem in a basin with cylindrical bottom. In the nonlinear long-
wave theory approximation it is shown that stationary propagation of a solitary wave above an underwater ridge may be
observed for some bottom form. Nonstationary wave propagation above the ridge is examined in the linear theory. It is
shown that for certain conditions the wave decays considerably more slowly along the ridge than in other directions.

1. Problem formulation. The subject problem reduces to finding the free surface form z; = £1(xy, vy, ty) and the
velocity potential &(x;, vy, Z1, t). In the region occupied by the fluid the potential satisfies the Laplace equation
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92,2 + Iy ? + dz4% =0 (.

and the boundary condifions:

1) bottom impermeability z; = ~hi{xy,yy)

by 9Dy | Ohy OD, | Dy .
T o T an T om0 (1.2)

2) free surface impermeability z; = £(Xy, y1, t1)
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3) constant pressure at the free surface z; = £;(x1, vy, ty)

T

01
Here g is the gravity acceleration.

In addition, the solution must satisfy certain initial conditions, which can be formulated in terms of the initial
value of the potential and the initial form of the free surface [3].

The problem presents serious difficulties for solution in this formulation. However, the problem can be
simplified considerably by certain additional assumptions on the nature of the solution.
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2. Long waves in a basin with uneven bottom (nonlinear theory). If the wavelength [ is large in comparison with
the average depth h; and the characteristic length of the bottom irregularities is no less than I, then we can introduce
the small parameter a = h%/ 1% into the problem by making the variable replacement

hy == hy (1 — &h),
o=Ir, y=1ly, z,=nhez.
3

' —e
tl = .yrgﬁo t'l Cl = ”'C: (D]_ = iho—Vgho(D . (2.1)

Here the time and potential scales are obtained from (1.1)—(1.4) under the assumption that £ and & and their
derivatives with respect to x,y, and t are of order unity.

We further assume that the wave amplitude
| a= ohy (2.2)
as is the case for the solitary wave. The potential is sought in the form of the series
D=0, + D00 + D0? + ... . (2.3)

To find the coefficients of this series we need only know the value of the potential at the free surface ¢{x,y,t) =
= &(x,y, at,t) and use the Laplace equation and the bottom impermeability condition. The standard calculation yields

7 (@, Y, 5, 1) mar = % (VAVG— (1 — ek + o) Ag) —

3 o2
—1502A% + O (a® + a%). (V:(%,W\, A=6?+§g,«27>‘ (2.4)
Further
]
VOl =Vo+0@), G| =5 +0E. (2.5)

Substituting (2.4) and (2.5) into the conditions at the free surface, we obtain two equations for determining the
form of the free surface ¢(x,y,t) and the value of the potential at the free surface ¢(x,y,t)

BV —eh+o7) V) + Y5 ah% = 0 (3 + &) . (2.6)
2+ Yaa (Vo) + L= 0(e). 2.7)
Equation (2.6) is the condition of free surface impermeability, and Eq. (2.7) is the constant-pressure condition.

3. Steady propagation of a solitary wave above a cylindrical bottom. The steady solution of (2.6), (2.7) depends
on y and t in the combination y — ct (in this section the combination y — ct is designated simply as y). Let for
definiteness ¢ > 0, i.e., the wave propagates in the positive direction of the y-axis.

The basin bottom is assumed cylindrical:

z=—14eh(z) (eL1).

We seek a solution of the form

L) =0 () + el (xy) + 0 (%, (3.1)
@ (%, ¥) = o (y) -+ 29y (%, y) + O (). (3.2)

Substitution of (3.1), (8.2) into (2.6), (2.7) leads to the known Rayleigh~Lavrent'ev formulas [4, 5] for the
functions £y and ¢,.

One of the solutions of these equations will be the solitary wave

§o=sch2@, dd;?;f’=sch2‘/73y+0(a). (3.3)
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The wave propagation velocity ¢ is connected with the wave amplitude by the relation
c=134Yo + 0 (@%). (3.4)
The functions £, and ¢; satisfy the equations

— & an—h@ R=o0@, R n-00). (3.5)

Hence it is not difficult to obtain the wave profile distortion caused by the bottom irregularity

x

=52 { G—Dr@E+0@- (3.6)

—0

A stationary solution which becomes a solitary wave as |x| — = is possible only in a basin whose bottom profile
satisfies the conditions

S h(z)dz =0, S ah(@)dz =0 . (3.7)

These conditions will be satisfied if the bottom consists of crests and valleys whose cross-sectional areas are
the same and the bottom profile has a vertical plane of symmetry.

Let the ridge satisfy conditions {3.7) and be a local perturbation of the bottom, i.e., h{x) =0 for Ix{ > A. Then
from (3.6) and (3.3) we can estimate the amplitude of the solitary wave perturbation caused by the ridge

& ~ aeh? . (3.8)
In the dimensions of the variables
oy~ (3.9)

Here ¢&; is the ridge height, b is the ridge width, and « is the amplitude of the solitary wave.

Note. It follows from (2.6), (2.7) that for steady wave propagation with the velocity ¢ = 1 + Ola)
% | 0z>= 0 (¢ + 8.
If we assume that

a3 —
2VE  ema, CELY

then after excluding ¢ and neglecting terms of O(a) we obtain the following equation for the potential ¢(x,y) at the free
surface:
\ 3% 3¢ _6__<6cp>2 1 8

ik 2— 1
ﬁ‘—;———('ST"{-h(X)/—-—[-T E” Ty —|——3—?F=O (X:WJ:) (8.11)

We might think that this equation has a solution which decreases in all directions at infinity. But this is not the
case, as is easily seen if we assume that the derivatives of order 1,2, 3 of the function ¢ decrease at infinity no slower
than (x24- y»~"*F, where 8 is an arbitrarily small number. These conditions ensure that @ = const at «. Integration of
(3.11) with respect to X for fixed y yields

st £ 557 4 39)ormme o2
i

It follows from the conditions at infinity that const = 0, after which it is not difficult to find by integrating (3.12)
with respect to y that
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§0§(g—$>2dXdy=0 for %;REO. (3.13})

4, Uunsteadywaves inabasinwith a cylindrical bottom (linear theory). Let us examine under the assumptions of
linear wave theory the unsteady propagation of waves in a basin with uneven bottom resulting from an initial
disturbance. We assume the wave amplitude and its ratio to the wavelength to be small; this makes it possible to shift
the conditions at the free surface to the plane of equilibrium of the resting fluid and neglect the nonlinear terms in the
boundary conditions (1.3) and (1.4).

The basin depth is assumed to be arbitrary and independent of the variable y, i.e., the bottom is cylindrical z =
=—1+h{x), h< 1. The parameters o and € equal unity. We seek the particular solutions of the problem which lead to
an equation for the free surface of the form

£ i () O (4.1)

where w and v are parameters, and the functions $(x) — 0 as [x| — «. We thereby study solutions which represent a
progressive wave propagating along the ridge and decaying rapidly in the direction perpendicular to the ridge.

Waves of this type, traveling along a sloping flat beach, were found by Stoker and have been studied by several
authors [6].

Let the bottom be a horizontal plane with a local rise at @ < x < b. Then it may be shown that solutions of the
form (4.1) exist and have several interesting characteristics. We find that for fixed v there is only a finite number of
solutions of this form,

Y=Yy (z,v), 0 =0, (v}, k=1,2,. .., n. 4.2)

The functions i (x, v} and the numbers wk{(v) naturally depend on the parameter v and are defined for oy < vl <
< Bk, where the functions themselves, their number, and the interval of variation of v are completely defined by the
form of the bottom and are independent of the initial conditions [7]. The concrete computation of the functions ;. and
wy and the determination of their number is possible only with the aid of computers. However, it is possible to make a
qualitative analysis; for example, we can establigh that for each

Py (2, )= 0 (PO, pw) >0 for [o] > 0. (4.3)

Solution (4.1) does not approach 0 as |yl = «. But if we multiply (4.1) by the arbitrary function a(v) and integrate
with respect to v we obtain a solution which approaches 0 as R = (x + yz)1 ! — w, and the rate of approach to infinity
can be arbitrarily fast with suitable choice of the function a(v). This wave solution is a cap-cloud type of wave which
travels with constant mean velocity along the ridge, gradually spreading out along the ridge and reducing in amplitude.
The energy of such 2 wave is localized in a band parallel to the ridge. Waves of this type also develop from an
arbitrary initial disturbance.

Assume for simplicity that &(x,y, z,0) = 0. Then

=L+ b+0G+.. .+ &Lt 4.4)
where
Ly =" g e Py (@, v)cos o (v 2a, (v)dv, (4.5)
2, <IN<B
a, =S &, (x, V)L (z, v, 0)dady. (4.6)

The sense of equality {4.4) is that the total motion energy
EQ=E@+E(@+...+EL) T E(LS- 4.7

Consequently the solution can be represented in the form of the sum of terms of a definite type. The terms
describe a group of waves traveling along the ridge. We can identify a special class of initial disturbances of the free
surface when ¢, = 0. This class is fairly broad. For certain particular cases of initial conditions we may find that only
the ¢) terms are present in the solution, and the remaining terms of the series (4.4) vanish. Solution (4.4) is analogous
to the expansion of an arbitrary motion of a linear oscillatory system into the sum of the characteristic oscillations.

184



A ledge on the bottom of the basin along a vertical beach plays exactly the same role as does the underwater
ridge. What has been said above is also valid in this case.

5. Asymptotic behavior of unsteady waves above an underwater ridge. The study of the asympiotic behavior of
the solutions through a long time interval is made using the stationary-phase method. For fixed x integral (4.5), which
gives the solution gy, differs from the solution for plane waves above a horizontal bottom only in the form of the
function wi(v). The decay of £j; as t — =, y/t = const, takes place because dzwk/d;v2 # 0. The initial disturbance of the
free surface breaks down into an ever increasing number of waves (crests and valleys), and the length of each wave
(along the y-axis) increases. In this case the wave amplitude ¢y decreases as t™Y/2 it dzwk/du2 # 0. However, if at
some point v, & (o, B the function d’wy/dv? has a zero of order m, then the vicinity of the point vy in integral (4.5)
yields a group of relatively slowly disintegrating waves of amplitude ~ V™2 | traveling with the average velocity
dwk(vk)/dv along the y-axis. Study of the zeros of the function dzcok/dv2 as a function of the ridge form shows that

Ck~t“7~|yi‘Y ' (5.1)

where vy takes one of the values %, ¥: and is determined only by the shape of the bottom. Thus v = 1/4 if the bottom
shape satisfies a certain equality.

In order to analyze this phenomenon we use the approximate equations (2.6) and (2.7), which after linearization
and simplification under assumption (3.10) yield the equation

o % g & —
azg =aa~X§—z —}—(1—uh(X))~a-;2-+—§~@%, X=Vaz (5.2)

This equation differs from the equation of linear shallow water theory in the last term. If we substitute into (5.2)
a function of the form (4.1) we obtain the equation

a‘%+(—v?+m2+m<vziL(X)-|——.-v;—>>1p(X)=0. (5.3)

Let

_fa 1XI<H
h(X)__{O’ [X|>1.

By virtue of the symmetry of the function h(X) the eigenfunctions of {5.3) can be only even and odd. Therefore it
is sufficient to examine separately the even solutions

_{acosy,X oI, (5.4)
Tlbexp (— VIE—HX 1) (X>N), )
and the odd solutions, taking the sine in place of the cosine in the interval (—1,1). Here
—_— 2 1 ;2 1
uz———ua;mﬁ)-kvzq +gv, ¢>0. (5.5)

Substituting (5.4) into the matching conditions at the point X = 1 (continuity of ¥ and (1 — ah)dy/dX, or with the
adopted accuracy dy/dX) we obtain

pp=1tha (k—1) +mn O < <o) . (5.6)
Here ny is defined by the implicit equation
Yamt (k — 1) + M= v* cos g, Yam (k — 1) <v* < oo {5.7)

On the other hand, from definition (5.5) there follows to within O{a?®

220 2 g/ 2(VE)
Tval‘=7u-;<iz‘m(‘h‘r>*”*>~ (5.8)
It follows from (5.7) that in the vicinity of v* = 1/2n(k — 1) the function
@ (W
AT A
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and is positive in the vicinity of w* = . Consequently, the right~hand side of (5.8) for sufficiently small q has no zeros;
for sufficiently large g there are zeros. Numerical calculations show that for g > gy the function clzcuk/dv2 has two
first-order zeros which merge for q = qp» forming a second-order zero. We note that in the shallow water formulation
the term —v* is not present in the bracket in (5.8); therefore there is a single first-order zero for all g > 0.

Thus, if the bottom is a broad step of small height then a very slowly decaying group of waves propagates along
the ridge. Its rate of decay lyl”” depends on the step area S as follows

v=1/ for 0 << 2¢= S/ h? <336,
=1, for §/r% = 43.0,33.6, 34.4, ...,
y=1, for other &§/hg. (5.9)

Thus, the influence of an underwater ridge on wave propagation does not reduce to a simple increase of the
amplitude but alsc determines in a significant way the very process of wave propagation, altering the nature of the
wave decay along the ridge. Very slowly damped waves (5.1) can propagate along the ridge, while the asymptotic
behavior of waves in a basin with smooth bottom has the form [8]

Lo (224 g (5.10)
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